
Exercise 1B: ScaffoldingTopics: Getting started, Generating a scaffold, Adding content

Exercise Preview

Exercise Overview

In this exercise, you will learn how to create a new application with Ruby on Rails
using a feature of Rails called scaffolding. While we’ll have you create a very simple
web app for storing recipes, you can go on to use scaffolding to make a wiki, a blog,
or even a corporate website!

Unlike other dynamic web programming languages like PHP and Java, Rails provides
a host of command line tools that do really helpful things such as generating files or
seeding your database with data!

Getting Started

1. Make sure you’re in the Finder (the Desktop).

2. From the Finder menu choose Hide Others to make sure no other apps are visible.

3. On the Desktop open the Class Files folder.

4. Go into the yourname-Rails Class folder and notice we’ve provided some folders
and files. We will use those later, but in this exercise we’re going to use Rails to set
things up for us. Notice we currently do not have a cookbook folder. We’re going to
create that in a moment.

5. Go back to the Class Files folder so you can see the yourname-Rails Class folder
icon. We’ll need it in a few steps.

17RUBY ON RAILS LEVEL 1 • COPYRIGHT NOBLE DESKTOP

1BScaffolding

6. Keep this window open, we’ll need to use it in a moment.

7. Much of Rails work happens in the Terminal (a command line interpreter). The
Terminal comes ready-to-use with your Mac. Go to Applications > Utilities and
launch Terminal.app.

8. Arrange the Terminal window and the Class Files window so you can see both at
the same time.

9. We’re going to use Rails to create our first site, but we need to create it in the proper
folder. Unix uses a cd command (cd = change directory) for navigating folders, much
like you navigate folders in the Desktop. We use a command such as cd folder/
subfolder to change directories. While we could type out the directory structure,
there is a graphical way that prevents typos! We do have to type in the cd command
though, so in Terminal, type cd and then press the spacebar once.

10. In the Class Files window you should see the yourname-Rails Class folder. Drag the
yourname-Rails Class folder onto the Terminal window and release. It will enter the
complete path for you! The Terminal command should now read:

cd /Users/yourUserName/Desktop/Class\ Files/yourname-Rails\ Class

• yourUserName will be your username on your computer

• A forward slash (/) separates each directory.

• A backslash (\) is required before a space in the folder name. The folder name is
Class Files so we need Class\ Files in the Terminal.

11. Make sure you’re in the Terminal and press Return to apply the command.

12. You’ll know it worked and that you’re in the proper directory because you should see
the yourname-Rails Class folder to the left of the username$ prompt. The current
command line prompt reads:

yourComputerName:currentFolder userName$

13. Before we run the Rails command to create our site, let’s open the folder on the
Desktop so we can visually watch what Rails will do. In the Finder’s Class Files
window, open the yourname-Rails Class folder. Keep the window open and
arranged so you can see it and the Terminal window.

14. Now we can create our first Rails site. In the Terminal type:

rails new cookbook

15. After typing the command, hit Return to apply it.

• In the Finder window you’ll see that a new cookbook folder gets created.

• In the Terminal window you’ll see a readout of everything Rails created and did.

RUBY ON RAILS LEVEL 1 • COPYRIGHT NOBLE DESKTOP18

Scaffolding1B

16. Once Rails is done and you’re back in the command prompt, in the Terminal type the
following command to go into the new cookbook folder that Rails just finished
creating for you:

cd cookbook

NOTE: Don’t forget to hit Return to apply the command. From now on, we won’t
keep saying to hit Return after every Terminal command. Assume you should hit
Return unless we tell you not to.

17. To see the contents of the folder, type the following command:

ls

NOTE: That is ls with a lowercase L. The ls command lists a directory’s contents.

In the Terminal you’ll see a list of files/folders that Rails has automatically generated.
We will look at the specifics of what these are soon enough.

18. If you are curious, in the Finder open the cookbook folder and you can see the same
folders/files you were just looking at in Terminal. The Terminal and Finder are two
ways of looking at the same thing. The Terminal is command-based and the Finder is
visual, but they work with the same files and folders!

Testing in a Browser

For now, we want to make sure that everything has been installed and is working
properly. To do that, we will see how things look in a browser.

1. In Terminal, type the following:

rails server

This command invokes the web server that comes bundled with Ruby on Rails. It
allows you to test your website in a browser. If you’ve ever set up a dynamic web
development server on your own, you’re probably going to appreciate the ease with
which Ruby on Rails makes this possible. Other platforms require quite a bit of work
to get to this step!

2. The Rails server is now booted up. You can verify this in the last line of text written
in Terminal, which lists the date, time, and information similar to:

INFO WEBrick::HTTPServer#start: pid=56747 port=3000

NOTE: Your pid (process identifier) will be different. These are always unique.

3. Open any web browser.

19RUBY ON RAILS LEVEL 1 • COPYRIGHT NOBLE DESKTOP

1BScaffolding

4. In the address bar—as if you’re navigating to a web page—type localhost:3000 and
hit Return.

NOTE: Local host is the default URL for a Rails development site. The colon indicates
that this is a port. Normally a web application would run on port 80 for http, or port
443 for https. Rails launches on port 3000 in order not to interfere with other
processes on your computer.

5. You should see a Welcome aboard page. Congratulations on starting your first Rails
site! This verifies that Ruby and Rails are installed correctly and that we are on a
server. In the welcome text on this page, Rails recommends that we use
rails generate to create our models and controllers. We are about to do
just that.

6. Close the browser window.

7. Switch back to Terminal.

8. Hit Control–C. That’s the Control key, not Command! This stops the server from
running. We have some work to do before we will need the server again.

Generating a Scaffold

Scaffolding is a powerful feature of Rails. It creates the basic structure of a relatively
complex website with very little effort. For this website we want to set up the
structure for recipes.

1. The command we’re going to write is a bit long so we’ll build it up over a couple
steps. Do not hit Return until we say to! In Terminal, type the following:

rails generate scaffold recipe

Let’s break that down:

• rails generate scaffold asks Rails to generate a scaffold.

• recipe is the name of the object being created.

2. In Terminal, continue writing the command by adding the bold text below. You must
enter it as a single line, even though it wraps onto multiple lines below.

rails generate scaffold recipe title:string description:text prep_time:string
ingredients:text directions:text

• These are all basic properties that make up a recipe in the database.

• The data type string signifies a single-line text field in a form.

• The data type text allows a larger text area in a form.

3. Double-check your command for typos.

RUBY ON RAILS LEVEL 1 • COPYRIGHT NOBLE DESKTOP20

Scaffolding1B

4. Once it looks good hit Return to run it. Your database is now being generated!

NOTE: When we ran this scaffold generation, part of what Rails built was a piece
called a migration. Migrations are changes to the structure of a database in Rails. In
this case, the command rails generate scaffold created a table in the
database so that our recipes can be stored somewhere. We will discuss migrations in
more detail later on.

5. In Terminal, type the following:

rake db:migrate

Notice in the Terminal’s output that this command created a new table called
recipes. The beauty of Rails is that it’s fast and uncomplicated. With a few simple
commands we have created a complex database.

6. Let’s look at what we’ve built in a browser! Type the following:

rails server

7. Open a web browser and navigate to localhost:3000/recipes

8. You should see the data fields we created listed in one line of text. Underneath that
line, click on the New Recipe link. This will take us to a new recipe form. It may not
be pretty, but it only took a few lines of code and a few minutes to do it!

Adding a Recipe

1. Let’s add a recipe! We’ve already typed out the content for you. Keep the browser
window open, and switch to the Finder.

2. Navigate into Class Files > yourname-Rails Class and double–click recipe.txt to
open it.

3. Copy and paste each component of the recipe into its corresponding field in the
cookbook database.

4. When done copying and pasting, in the browser click Create Recipe.

• A new page opens with a message at the top letting us know that we successfully
created a new recipe.

• Notice the URL has changed to localhost:3000/recipes/1 Rails knows this is our
first recipe!

5. Click the Edit link. Here you can update fields when necessary.

6. Change the Prep time to 25 minutes.

7. Click Update Recipe to save the changes.

8. Click the Back link. This takes us to the Rails-generated table view of all the recipes.

21RUBY ON RAILS LEVEL 1 • COPYRIGHT NOBLE DESKTOP

1BScaffolding

9. Here, you will see three links to the right of the table: Show, Edit, Destroy. This
allows you to view your work, edit it, or delete it from the site.

10. We’ll continue with this site in the next exercise, so just leave everything open and
the Rails server running.

With a few simple commands in Terminal, we’ve built a new site, started a web
server, created an object type called recipes, and set up a database to hold all of our
information. This is incredible!

NOTE: For more info about the file structure of the website we just created, go to
the Basic Structure of Scaffolding reference at the end of the workbook.

RUBY ON RAILS LEVEL 1 • COPYRIGHT NOBLE DESKTOP22

Scaffolding1B

	Ruby on Rails Level 1
	Copyright Info
	Table of Contents
	Downloading the Class Files
	Before You Begin: Installing Ruby on Rails
	Topics: Installing Command Line Tools, Installing Homebrew, Installing Ruby Version Manager (RVM), Installing Ruby & Rails

	Exercise 1A: Setting Up: Do This Before Other Exercises!
	Topics: Setting up your class files

	Exercise 1B: Scaffolding
	Topics: Getting started, Generating a scaffold, Adding content

	Exercise 1C: Adjusting the Templates Created by Scaffolding
	Topics: Formatting Rails, Coding simple styles in Rails, Coding title bar titles, Redirecting the site root page, Editing the CSS, Adding basic security

	Exercise 1D: Ruby Fundamentals: Classes & Objects
	Topics: Everything in Ruby is an object, Defining a class

	Exercise 2A: Ruby Fundamentals: Properties & Variables
	Topics: Properties of objects, Instance variables & local variables, Global variables

	Exercise 2B: Ruby Fundamentals: Manipulating Variables
	Topics: Creating strings in Ruby, Simple string methods: changing case, Substrings, Ranges, Comparing strings, Regular expressions

	Exercise 2C: Ruby: Sanitizing User Input & Control Structures
	Topics: Sanitizing user input, Integers & decimals, If/else, unless, & case statements, Constants, Symbols

	Exercise 2D: Ruby: Collections
	Topics: Arrays: the simplest collections, Hashes, Enumerators, Common iterators

	Exercise 3A: MVC: Creating a Model, View, & Controller
	Topics: MVC: model-view-controller, Creating a new Rails site for Flix, Generating a new model, Editing a migration file, Populating a database with a seed file, Creating a new controller

	Exercise 3B: Integrating the Front-End Designer’s Code
	Topics: Incorporating the designer’s HTML & CSS, Incorporating the JavaScript files, images, & fonts

	Exercise 3C: MVC: Controllers & Routing
	Topics: Resourceful vs. non-resourceful routing, Assigning instance variables, What if the names don’t match?, Optional bonus: redirects

	Exercise 3D: MVC: Views
	Topics: Creating a view, Adding dynamic data, Rendering a partial, Optional bonus: rendering a view

	Exercise 4A: Forms in Rails: Creating the Form
	Topics: form_tag & form_for, Checkboxes, radio buttons, & select boxes, Adding a dropdown menu, Adding a date selector & submit button

	Exercise 4B: Forms in Rails: Processing & Editing Form Data
	Topics: Making the form work: defining a create method, Making an edit form, Optional bonus: DRYing up the code even more

	Exercise 4C: Model Creation & Management
	Topics: Generating & rolling back a migration, Updating views & controllers to match an updated model, Viewing the contents of a database

	Exercise 4D: Exploring & Validating Models
	Topics: Exploring database contents in Rails console, Adding an object in Rails console, Editing an object in Rails console, Adding basic validation to a model

	Exercise 5A: Model Methods & Scopes
	Topics: Creating a model method for runtime, Scopes, Optional bonus: DRYing up the scopes, Additional bonus: adding the tab highlight behavior

	Exercise 5B: Model Relationships
	Topics: Creating a model for cast members, Adding objects to the cast members model in Rails Console, Updating views to include the cast members model, Creating a genre model, Adding a genre field to the edit form

	Exercise 5C: Model Relationships: Creating a Genre View
	Topics: Creating a genre controller, Creating a genre view, Improving the look of the genre view

	Exercise 6A: Introduction to Testing
	Topics: Fixtures, Basic tests: assert & refute, Other assert methods, The importance of error messages, Writing simple tests using fixtures, Optional bonus: writing tests using embedded Ruby code, Additional bonus: helpers

	Exercise 6B: MVC Tests
	Topics: What to test, Testing a custom validation, Testing a model method, Testing a controller

	Exercise 6C: Gems: Plugins for Ruby
	Topics: What is a gem?, Gemfile and Gemfile.lock, Installing a new gem, Adding sign in & sign out links, Adding basic user authentication, Removing the ability for users to register themselves

	Exercise B1: Managing Your Code with Git
	Topics: Creating a new Git repository, Tracking changes & adding files, Committing code to Git, GitHub: pushing your code to the cloud, Committing a change to the repository, Cloning a repository

	Noble’s Other Workbooks
	Basic Structure of Scaffolding

